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The method of general ized s imi la r i ty  of the boundary- layer  theory  is applied to the problem of 
laminar  flow of a viscous gas in thin c i rcu la r  pipe with cross  section which var ies  along the 
length of the pipe. 

GENERAL FORMULATION 

OF THE PROBLEM 

We consider the steady-state laminar flow of a viscous gas in a circular thin heated pipe with radius r0(x) 
which varies smoothly from one cross section to another, and with temperature T(x). We use the generally 
accepted assumptions of the dynamics of viscous gases [1]: The gas is an ideal Newtonian medium; the dynamic 
viscosity coefficient p is a power function of temperature; the specific heats Cp and Cv, their ratio ~4 = Cp/Ov, 
and the Prandtl number Pr = pCp/k are temperature-independent, and are physical constants of the gas. Under 
these assumptions, using the "thin layer" approximation in the variables of Dorodnitsyn [i, 2] 
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the gas flow is descr ibed by the sys tem of equations 
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or, if we introduce the flow functionr accord ing to  the formulas  
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the flow is descr ibed by the sy s t em 
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with the conditions 
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U N I V E R S A L  E Q U A T I O N S  

To in tegra te  the s y s t e m  of equations (4) with conditions (5), we use the ideas of the method of genera l ized  
s imi l a r i t y  of the bounda ry - l aye r  theory  of Loi tsyanski i  [1], applied to the l amina r  flows of a v iscous  fluid in a 
thin l aye r  in [3]. The e s sence  of the method consis ts  of wri t ing Eq. (4) and conditions (5) in t e r m s  of va r i ab l e s  
which include kinematic,  geomet r ic ,  and the rmodynamic  conditions of the p r o b l e m  in such a way that the final 
f o rm of the equations does not contain these  conditions. Consequently, these equations and t he i r  solution will 
be un ive r sa l  for al l  p rob l ems  of the same  class .  

We shall  show that these  equations can indeed be constructed.  To this end, we rep lace  the v a r i a b l e s  in 
(4) and (5) by the coordinate  q~ and by reduced flow function and enthalpy �9 and H as follows: 
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As a resu l t  of this t r ans fo rma t ion ,  the s y s t e m  and conditions take on the following f o r m  (the dot denotes 
different iat ion with r e spec t  to ~, and p r i m e  with r e spec t  to 6): 
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The equations contain d imens ion less  complexes  which give the bas is  for const ruct ion of se ts  o r  s e r i e s  
of these  complexes,  i .e. ,  f o r m - p a r a m e t e r s  or  s imply  p a r a m e t e r s :  

O~ dhA 1 Qk d~hw 1/hw, k = O, 1, 2. (9) 
fh - -  v~ d~h ~ - ,  t h - -  ~ d~h "" 

These p a r a m e t e r s  ref lect  the effect  of geome t ry  and sur face  t e m p e r a t u r e  dis t r ibut ion on the fo rmat ion  of 
veloci ty  and t e m p e r a t u r e  prof i les  in the c ross  sect ion of pipe. In addition, the hea t -ba lance  equation contains 
the complex 

e = Q2/h~A;, (10) 

which is the analogue of the Ekke r t  number  of the hea t -exchange  theory  [2]. 

The der iva t ives  with r e s pec t  to ~ of the s e r i e s  of p a r a m e t e r s  (9) give the r e c u r s i o n  re la t ions  
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which re la te  the p a r a m e t e r s  with consecutive numbers  and fo rmthe  bas is  for obtaining the s e r i e s  of p a r a m e t e r s  
(9). The der iva t ive  with r e s pec t  to the p a r a m e t e r  e 
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can be e x p r e s s e d  in t e r m s  of this p a r a m e t e r ,  fl, and t i in such a way that  i t  does not f o r m  a new se r i e s .  
exp res s ion  (11), w denotes a p a r a m e t e r  which contains a der iva t ive  of v w and has the following form:  
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Since the p r e s s u r e  is  independent of the t r a n s v e r s e  coordinate,  the reduced p r e s s u r e  gradient  
A s dp 
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in Eqs. (7) and (13) is a function of only fk, tk, and e, and can be e x p r e s s e d  in t e r m s  of these  quanti t ies  using 
the condition ~(fk, tk, e, 1)=1. 
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The definit ion of the p a r a m e t e r s  contains functions which a re  continuous and can be different ia ted any 
number  of t imes .  These  functions which a r e  a r b i t r a r y  can be r ega rded  as  mutual ly independent, and can be 
cons idered  as new var iab les .  Using the fo rmula  (summation with r e spec t  to k) 

Q O =Q~+~ 0 O O = L (15) 

one t r a n s f o r m s  f r o m  the va r i ab le  ~ to the functional space of p a r a m e t e r s  { fk, tke}- AII this is done in such a 
way that  Eq. (7) can be wr i t ten  in the un ive r sa I  f o r m  (in the above sense)  which does not eontain the concrete  
f ea tu res  of the p rob lem:  
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with conditions (8). The las t  condition in (5) is replaced by one which follows f r o m  Eqs. (16) if  the p a r a m e t e r s  
of genera l ized  s i m i l a r i t y  a r e  se t  equal  to zero.  

SIMILARITY OF THE FLOW 

OF VISCOUS GAS IN PIPES. 

PARAMETRIC APPROXIMATIONS 

Since the number of parameters is infinite, it is impossible to integrate Eq. (16) obtained above. In 
practice, one therefore limits oneself to a small number of parameters, and integrates "finite fragments" of 
these equations. 

Keeping fl, ti, and e in the equations, and omitting the operators of differentiation with respect to the 
parameters, we have the system of equations 
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with conditions (8). When the p a r a m e t e r s  a r e  independent of the c ro s s  section, Eqs. (17) exp re s s  the s t r i c t  
s imi la r i ty ,  o r  automodell ing,  of the flow in pipes with var iab le  c ross  section. When the p a r a m e t e r s  vary ,  the 
equations give a s i m p l e r  s im i l a r i t y  concept, i .e.,  local  s im i l a r i t y  with r e spec t  to these  p a r a m e t e r s  which, for  
f2 =re = 0, has a meaning as long a s ( ~ + f t ) f  i o r  (w+tl)t 1 a r e  smal l ,  i .e. ,  the der iva t ives  with r e spec t  to p a r a m -  
e t e r s  can be neglected.  When these  quanti t ies va ry  considerably,  one needs to include the der iva t ives  with 
r e spec t  to the p a r a m e t e r s  ft and t I in the ope ra to r  L. This is the so -ca l l ed  p a r a m e t r i c  approximat ions .  On the 
example  of the equation of mo t ion , t h i s  means  the following. The o n e - p a r a m e t e r  approximat ion  (fl s0 ;  f2 =f3... 
fk=0)  is the f r agmen t  of equation of the type 
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Equation (18) is exact  i f  f2 =0, i .e . ,  when the function A(}) is l inear .  In genera l ,  the n - p a r a m e t e r  approximat ion  
is exact  if  this function is a polynomial  of o rde r  n. One can cons t ruc t  also intermediate  or  local  n - p a r a m e t e r  
approximat ions ,  by keeping n p a r a m e t e r s  fk (k= l ,  2 . . . .  n) in the equations but omitt ing the der iva t ive  with 
r e spec t  to the p a r a m e t e r  fn- In an analogous fashion, one can solve the p r o b l e m  by approximat ions  with respec t  
to the p a r a m e t e r s  t k. 

Thus,  i t  is  suggested that  the p r o b l e m  of flow of v iscous  gas in pipes of va r iab le  c ro s s  sect ion is solved 
in two s tages .  In the f i r s t  stage,  one solves  once and for  a l l  Eq. (16) with conditions (8) in some p a r a m e t r i c  
approximat ion.  One a l so  de t e rmines  the functions ~ ( r  .fl --. fn; tl .-. in; e); H(r fl ... fn; t l . . .  tn; e); P(fl .-. fn; 
t I ... in; e), so that  the reduced f r ic t ion coefficient  is  } =~ (1), and the heat flux is q =I:t(1). In the second stage,  
one calcula tes  the p r e s s u r e  d is t r ibut ion and other  c h a r a c t e r i s t i c s  of the flow f r o m  the concrete  laws of v a r i a -  
t ion of the pipe radius  and t e m p e r a t u r e .  To this end, the r e su l t s  of the f i r s t  s tage must  be used to obtain an 
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explicit form of functions of the pa ramete r s ,  and the Dorodnitsyn var iables  (1) must be replaced by the "physi-  
caI,  variables  x and r. 

We note that the theoret ical  analysis  of s imi lar i ty  of flow of a viscous gas in pipes with heat exchange is 
analyzed theoretically,  e.g., in [4]. 

N O T A T I O N  

x, r, cylindrical  coordinates;  u, v, velocity components;  Pw, Pw, and Vw, p res su re ,  density, and kinematic 
ro(x) q~ 

coefficient of v iscosi ty  for tempera ture  of the wail; ~'= v'H-1 ~- ~ x  u; A = H - a d / ;  r =  Hdq~; Q = n tdr  I = Qo 
. , �9 2 ~ 9 w  , 

o o o 

Q0, constant flow rate of the gas. 

1. 

2. 
3. 

4. 
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CALCULATION OF THE LAMINAR FLOW 

OF AN INCOMPRESSIBLE LIQUID AROUND A DISC 

AND A CYLINDER 

I. A. Belov and N. A. Kudryavtsev UDC 532.517.2 

We study the c i rcu la r  flow of a viscous incompress ib le  liquid around a disc and a cylinder,  in 
the range of Reynolds numbers 40 -< Re -< 1000. 

The aim of the present  work is to obtain stable and sufficiently accura te  numer ica l  solutions for the flow 
near  a disc and a cylinder. The bodies a re  i m m e r s e d  in a c i r cu la r  flow of a viscous incompress ib le  liquid, with 
a zero  angle of incidence. This type of information is essent ia l  since, in the construct ion of models of flow of 
a liquid which contains solid par t ic les ,  one usually uses the data about the action of the liquid on an individual 
par t ic le  [1]. The solution is based on the difference approximation of the Nav ie r -S tokes  equations according to 
a scheme used in [2]. There  are a n u m b e r o f f e a t u r e s  of the scheme that make it useful for the study of the flow 
considered here,  which is charac ter ized  by the presence  of developed circulat ion zones. These features are:  
the use of velocity components and p r e s s u r e  cor rec t ion  as the bas ic  independent var iables ,  the displacement  of 
the grid for velocity components, the combination of uni lateral  and central  difference in the approximation of 
convection t e rms  (hybrid scheme). The solution is l imited to the region of Reynolds numbers  constructed f rom 
the unperturbed flow and f romthe  d iamete r  of the disc  or  cylinder, i.e., 40 <- Re -< 1000. Possible effects of 
three-dimensional i ty  of the flow were not considered. 

In a cyl indrical  coordinate sy s t em (x, r), the equation for the change of momentum and the continuity 
equation can be writ ten in the fo rm 
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