GENERALIZED SIMILARITY OF LAMINAR NONISOTHERMIC
FLOWS OF A VISCOUS GAS IN THIN PIPES OF VARIABLE
CROSS SECTION

B. I. Smirnov and L. G. Stepanyants ~ UDC 532.516

The method of generalized similarity of the boundary-layer theory is applied to the problem of
laminar flow of a viscous gas in thin circular pipe with cross section which varies along the
length of the pipe.

GENERAL FORMULATION
OF THE PROBLEM

We consider the steady-state laminar flow of a viscous gas in a circular thin heated pipe with radius r,(x)
which varies smoothly from one cross section to another, and with temperature T(x). We use the generally
accepted assumptions of the dynamics of viscous gases [1]: The gas is an ideal Newtonian medium; the dynamic
viscosity coefficient u is a power function of temperature; the specific heats Cp and cy, their ratio n = Cp/cvs
and the Prandtl number Pr= ucp/?» are temperature-independent, and are physical constants of the gas. Under
these assumptions, using the "thin layer" approximation in the variables of Dorodnitsyn {1, 2]
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the gas flow is described by the system of equations
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UNIVERSAL EQUATIONS

To integrate the system of equations (4) with conditions (5), we use the ideas of the method of generalized
similarity of the boundary-layer theory of Loitsyanskii {1], applied to the laminar flows of a viscous fluid in a
thin layer in [3]. The essence of the method consists of writing Eq. (4) and conditions (5) in terms of variables
which include kinematic, geometric, and thermodynamic conditions of the problem in such a way that the final
form of the equations does not contain these conditions. Consequently, these equations and their solution will
be universal for all problems of the same class,

We shall show that these equations can indeed be constructed. To this end, we replace the variables in
{4) and (5} by the coordinate ¢ and by reduced flow function and enthalpy ® and H as follows:
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As a result of this transformation, the system and conditions take on the following form (the dot denotes
differentiation with respect to ¢, and prime with respect to £):
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The equations contain dimensionless complexes which give the basis for construction of sets or series
of these complexes, i.e., form-parameters or simply parameters:
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by, k=0, 1, 2. (9)

These parameters reflect the effect of geometry and surface temperature distribution on the formation of
velocity and temperature profiles in the cross section of pipe. In addition, the heat-balance equation contains

the complex
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which is the analogue of the Ekkert number of the heat-exchange theory [2].

The derivatives with respect to £ of the series of parameters (9) give the recursion relations
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which relate the parameters with consecutive numbers and formthe hasis for obtaining the series of parameters
(9). The derivative with respect to the parameter e -
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can be expressed in terms of this parameter, fj, and t; in such a way that it does not form a new series. In
expression (11), w denotes a parameter which contains a derivative of vy and has the following form:

Q dv % 13)
— L ep—(n -+ 1) {,.
g 1 p—@n+ 1)
Since the pressure is independent of the transverse coordinate, the reduced pressure gradient
4
__A dp (14)
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in Eqgs. (7) and (13) is a function of only fi, ti, and e, and can be expressed in terms of these gquantities using
the condition <I>(fk, ty, €, 1)=1,
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The definition of the parameters contains functions which are continuous and can be differentiated any
number of fimes. These functions which are arbitrary can be regarded as mutfually independent, and can be
considered as new variables. Using the formula (Summation with respect to k)
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one transforms from the variable £ to the functional space of parameters {fk, tke}.‘ All this is done in such a
way that Eq. (7) can be written in the universal form (in the above sense) which does not contain the concrete
features of the problem:
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with conditions (8). The last condition in (5) is replaced by one which follows from Egs. (16) if the parameters
of generalized similarity are set equal to zero.
SIMILARITY OF THE FLOW
OF VISCOUS GAS IN PIPES.
PARAMETRIC APPROXIMATIONS

Since the number of parameters is infinite, it is impossible to integrate Eq. (16) obtained above. In
practice, one therefore limits oneself fo a small number of parameters, and integrates "finite fragments” of
these equations.

Keeping fj, t;, and e in the equations, and omitting the operators of differentiation with respect to the
parameters, we have the system of equations
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with conditions (8). When the parameters are independent of the cross section, Egs. (17) express the strict
similarity, or automodelling, of the flow in pipes with variable cross section. When the parameters vary, the
equations give a simpler similarity concept, i.e., local similarity with respect to these parameters Which', for

f, =ty = 0, has a meaning as long as(w+1))f; or w+1t)t; are small, i.e., the derivatives with respect to param-
eters can be neglected. When these quantities vary considerably, one needs to include the derivatives with
respect to the parameters f; and t; in the operator L, This is the so~-called parametric approximations. On the
example of the equation of motion, this means the following. The one~parameter approximation (f; =0; fy =15 |
fie =0) is the fragment of equation of the type
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Equation (18) is exact if f, =0, i.e., when the function A{(£) is linear. In general, the n-parameter approximation
is exact if this function is a polynomial of order n. One can constructalso intermediate or local n-parameter
approximations, by keeping n parameters fi (k=1, 2, ... n) in the equations but omitting the derivative with
respect to the parameter fy. In an analogous fashion, one can solve the problem by approximations with respect
to the parameters f.

Thus, it is suggested that the problem of flow of viscous gas in pipes of variable cross section is solved
in two stages. In the first stage, one solves once and for all Eq. (16) with conditions (8) in Some parametric
approximation. One also determines the functions ®(g; gttty e); Hip; £y ... fys ty . tps e); P ... f3
ty ... tn; e), so that the reduced friction coefficient is £ = =% (1), and the heat flux is q=H(1). In the second stage,
one calculates the pressure distribution and other characteristics of the flow from the concrete laws of varia-
tion of the pipe radius and temperature. To this end, the results of the first stage must be used to obtain an
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explicit form of functions of the parameters, and the Dorodnitsyn variables (1) must be replaced by the "physi-
cal" variables x and r.

We note that the theoretical analysis of similarity of flow of a viscous gas in pipes with heat exchange is
analyzed theoretically, e.g., in [4].

NOTATION

x, r, cylindrical coordinates; u, v, velocity components; py, pw, and vy, pressure, density, and kinematic
5 rolx) 0 A

coefficient of viscosity for temperature of the wall; v=v.H-1 4+ —éﬂ-u;_ A= S’ H™dy; 7= Yqu;; Q= g'rudn =
X . . «
0 0
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Qg constant flow rate of the gas.
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CALCULATION OF THE LAMINAR FLOW
OF AN INCOMPRESSIBLE LIQUID AROUND A DISC
AND A CYLINDER

I. A, Belov and N, A, Kudryavtsev UDC 532.517.2

We study the circular flow of a viscous incompressible liquid around a disc and a cylinder, in
the range of Reynolds numbers 40 = Re =1000.

The aim of the present work is to obtain stable and sufficiently accurate numerical solutions for the flow
near a disc and a cylinder. The bodies are immersed in a circular flow of a viscous incompressible liquid, with
a zero angle of incidence. This type of information is essential since, in the construction of models of flow of
a liquid which contains solid particles, one usually uses the data about the action of the liquid on an individual
particle [L]. The solution is based on the difference approximation of the Navier—Stokes equations according to
a scheme used in [2]. There are anumber of features of the scheme that make it useful for the study of the flow
considered here, which is characterized by the presence of developed circulation zones. These features are:
the use of velocity components and pressure correction as the basic independent variables, the displacement of
the grid for velocity components, the combination of unilateral and central difference in the approximation of
convection terms (hybrid scheme). The solution is limited to the region of Rzynolds numbers constructed from
the unperturbed flow and fromthe diameter of the disc or cylinder, i.e., 40= Re=1000. Possible effects of
three-dimensionality of the flow were not considered.

In a cylindrical coordinate system (x, r), the equation for the change of momentum and the continuity
equation can be wriften in the form
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